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The problem of determining the chemical potential of mass- and heat-transfer processes for porous bodies of
a classical shape (an infinite plate, a sphere, etc.) is considered; the solution obtained is illustrated with ex-
amples of the nonisothermal extraction and nonisothermal adsorption purification of vegetable oils.

Mass and heat transfer in porous bodies acquires new characteristics in considering the transfer of energy
(change in the chemical potential) with account taken of the actual porosity of solids (extracted materials and adsor-
bents) [1–5] and the propositions of the kinetic theory of liquids [6]. Introduction of the coefficient of potential con-
ductivity of the energy Len [4, 5] allows one by analogy with heat conduction and diffusion to write the equation
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in which µ is a function of two potentials at a minimum (usually the temperature and the concentration) in conformity
with the commonly accepted expression

µ = ρ (µst + RgT ln C) . (2)

In the case of a unipotential process (only heat conduction, only diffusion, etc.), Eq. (1) becomes the corre-
sponding equation of this process (the equation of heat conduction, diffusion, etc.). For a polypotential process (two
potentials or more) the situation is different.

The polypotential (four-potential [2]) system of equations is quite useful in studying the mechanism of the
process; however its analytical solution is impracticable; therefore, investigation of the kinetics of a complex process
is difficult. By introducing a base potential [2], it is possible to obtain a system of uncoupled equations. In the present
work, we suggest another way of solving the problem, which is based on consideration of the flux balance in a certain
cross section of a body.

For simplicity we consider the one-dimensional problem for an infinite plate (the same is also true for any
other classical shape of a particle, i.e., a sphere and a cylinder):

∂µ (x, τ)
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2  . (3)

The flux balance in the cross section of the plate which is in parallel to its surface is

& Len 
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∂x
 % λ 

∂T (x, τ)
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 % Di 
∂C (x, τ)

∂x
 = 0 . (4)

In analysis of the specific processes, the signs in Eq. (4) must reflect the directions of the corresponding
fluxes of heat and substance mass.

Equation (4) can be written in generalized form as follows:
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For the second derivatives, which is reflected in Eq. (3), we write
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or with account for Eq. (3)
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Integration leads to
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(8)

The integrand in Eq. (8) reflects only one mechanism of all the fluxes, for  example, the molecular  one. The
boundary conditions can be different.

For  two mechanisms of the fluxes we have
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The general representation is

µ (x, τ) = & Kmn ∫ 
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2  ∂τ + Cin . (10)

Let us solve certain problems using the method proposed.
Nonisothermal Extraction of Vegetable Oils. The internal transfer of mass and heat occurs by way of mole-

cules [5]. As the boundary conditions we choose boundary conditions of the third kind (the most widespread in actual
practice), i.e., the convective supply of heat and removal of a substance in conformity with the Newton law. An infi-
nite plate (lobe) of thickness 2R is considered.

The initial condition is

µ (x, 0) = 
λ
a

 T0 + iC0 , (11)

the symmetry condition is

∂µ (0, τ)
∂x

 = 0 . (12)

We are unaware of theoretical investigations into nonisothermal extraction. The experimental study of this
process was carried out by A. G. Neshchadim (see, in particular, [7]) and it was shown that the possibility exists of
considerably accelerating the extraction of oil.

The considered case involves two fluxes — of heat and a substance — with one molecular mechanism, i.e.,
to determine the chemical potential we can use Eq. (8).
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The problems are solved for the temperature and the concentration (heat conduction and diffusion) individu-
ally, in particular, in [8].

The energy-flux balance for any cross section inside the plate (0 < x < R) which is in parallel to its surface
can be written in the following manner:
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where λ = K1 and Di = K2.
Having taken the second derivatives of the solutions for T(x, τ) and C(x, τ) presented in [8] and substituted

them into Eq. (8), after integration with account for Eq. (13) we obtain
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The coefficients An and An1 and the roots of the characteristic equations µn and µn1 are given in [8].
For τ → 0 the constant of integration over the conditions of the problem will be equal to

Cin = 
λ
a

 T0 + iC0 + 
λ
a

 (Tmed − T0)  ∑ 

n=1

∞

 An cos µn 
x
R

 − i (C0 − Cmed)  ∑ 

n1=1

∞

 An1 cos µn1 
x
R

 . (15)

Then finally we obtain
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Averaging of Eq. (16) gives
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Equation (16) or (17) reflects physically the following law: in the course of the nonisothermal extraction, the
chemical potential (heat content) as the algebraic sum of the heat supplied due to heat exchange and the heat with a
substance removed due to mass exchange is added to the initial chemical potential (initial heat content). With time this
sum decreases rapidly, and for τ → ∞ the finite value of the chemical potential will be equal to

µ
__

 (∞) = 
λ
a

 Tmed + iCmed ,
(18)

whereas during the extraction with a pure solvent (Cm = 0), it is equal to
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Then we perform calculations by Eq. (17).
The extracted material is a preliminary pressed lobe of sunflower seeds. From the data of [7] and using the

formula given in [2], we obtain D = 1.325⋅10−11 m2 ⁄ sec for R = 0.47⋅10−3 m and a mean extraction temperature of
330.7 K. The concentration of the micella inside the particles is 40% (310 kg ⁄ m3) and 100% (900 kg ⁄ m3) (two vari-
ants) at τ = 0. The enthalpy of the oil at 330.7 K is i = 269⋅103 J/kg [9]. The extraction is carried out using a pure
solvent (Cm = 0) in intense mixing, so that it can be assumed that Bi → ∞. For this value of Bi the coefficients An are
equal to An1 and the roots of the characteristic equation µn are equal to µn1; their numerical values are given in [8]:
Tm = 388 K and T0 = 323 K. The values of λ = 0.147 J/(m⋅sec⋅K) and a = 3.34⋅10−8 m2 ⁄ sec are calculated from the for-
mulas of [10]. The results of the calculations are presented in Table 1.

It is evident from Table 1 that at first the chemical potential decreases rapidly (when C0 = 100%, the extrac-
tion is real), since at this period a large amount of oil is extracted; the amount of the extracted oil decreases and the
chemical potential becomes constant with time, i.e., there comes a balance when the energy is supplied due to heating
and is removed due to the extraction of oil. Since a is three orders of magnitude larger than D, already after a short
period of time the particles are heated to Tm, and at τ = 102−105 sec we can disregard the terms of Eq. (17) which
reflect the change in the chemical potential because of the decrease in the concentration of the internal solution (by
this time, the concentration is already so low that it cannot substantially affect the chemical potential). Therefore, the
quantity µ

__
(τ) at τ = 105 sec was determined from Eq. (19). This is the chemical potential of the waste material ("shot")

saturated with the solvent.
Adsorption Purification of Vegetable Oils. As has been shown previously [2, 5], adsorption and extraction

can be considered as processes with the opposite directions of the mass-flux vectors (during the extraction the mass
flux is directed from within the particles to the environment, while in the case of adsorption, conversely). Moreover,
the adsorption of vegetable oils is a nonisothermal process in character (sorption of substances occurs simultaneously
with heating); therefore, it is quite logical to compare the energy fluxes due to the change in the chemical potential
and correspondingly in the temperature and the concentration inside the particles.

Let us consider the equation of energy transfer for spherical particles, assuming that the rate of the process is
controlled by the diffusion of sorbed substances in a porous particle (the rate of the sorption proper on the active cen-
ters of the sorbent is taken to be equal to infinity) and by the heat conduction of the particles proper saturated with
oil, i.e., we again use Eq. (8). For simplicity we take boundary conditions of the first kind, i.e., the environment tem-
perature and the concentration of the sorbed substances in the environment will be considered to be constant. The dif-
fusion saturation of particles with a sorbed substance simultaneously with heating of them is observed.

The initial system of equations is as follows:
the equation of internal energy transfer for spherical particles is

∂µ (r, τ)
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TABLE 1. Change in the Chemical Potential under Nonisothermal Extraction, µ
__
⋅10−8 J ⁄ m3

τ, sec C = 40% C = 100%

0 15.03 16.60

10 14.87 14.87

102 14.87 14.87

103 14.87 14.87

104 14.87 14.87

105 14.88 14.88
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the initial condition is

µ (r, 0) = 
λ
a

 T0 .
(21)

At the initial instant of time, the sorbent is saturated (impregnated) with oil at T0.
The symmetry condition is

∂µ (0, τ)
∂r

 = 0 .
(22)

The energy-flux balance for any spherical cross section inside a sphere (0 < r < R) can be written in the fol-
lowing manner:
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Equation (23) reflects the heating of the body and its diffusion saturation with the substance: from the body
surface (R = r) to the boundary r we have the inflow of energy by heat conduction and the inflow of energy with the
mass of the sorbed substance. Here it is allowed that the impregnation of the material with the solution from the en-
vironment occurs instantly; this is reflected by Eq. (21).

By analogy with the problem of extraction we obtain
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The integration constant Cin is found from Eq. (24) at τ = 0:
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The form of Eq. (25) has been determined by the fact that, according to the formulation of the problem, the
initial value of the chemical potential is determined from Eq. (21). Finally we have
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The averaging of Eq. (25) over the radius yields
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Let us analyze Eq. (27). When the process is very long (τ → ∞) we obtain the maximum value of the chemi-
cal potential (of the energy contained in the spent sorbent):

µ
__

 (∞) = 
λ
a

 Tmed + iCmed . (28)
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The evaluational calculations from Eq. (28) indicate that its first term is two orders of magnitude larger than
the second term, i.e., during the adsorption purification of vegetable oils, the energy of the spent sorbent is mainly
formed due to its heating. This is natural, since the amount of the sorbed substances is small compared to the ab-
sorbed oil and the mass of the sorbent itself and is of decisive importance for the quality of refined oil.

In the course of the adsorption purification, the energy components of the sorbent are comparable since D is
several orders of magnitude smaller than a [1]. The relationship between the energy components of the sorbent de-
pends in this case on the time of the process and can be determined from Eq. (27).

The energy of the spent sorbent represents the energy loss in production, and no methods to decrease this loss
have been suggested until recently. The present work allows one to determine the energy loss at any stage of the proc-
ess (at any time and any parameters).

NOTATION

µ, chemical potential; µst, chemical potential in the standard state; τ, time; x, r, coordinates; R, one-half thick-
ness of an infinite plate, sphere radius; Rg, gas constant; Len, coefficient of potential conductivity of the energy; v,
form factor: v = 0, unlimited plate, v = 1, unlimited cylinder, v = 2, sphere; T, temperature; C, concentration; ρ, density;
λ, thermal-conductivity coefficient; D, diffusion coefficient; i, enthalpy of the diffusing substance; Cin, integration con-
stant; P, potential (temperature, concentration, etc.); a, thermal-diffusivity coefficient; K, kinetic coefficient; An and
An1, coefficients; µn and µn1, roots of the characteristic equations; Bi, Biot number. Subscripts: 0, initial state; m,
number of the flux (mass flux, heat flux, etc.); n, number of the mechanism of the flux (molecular, convective, etc.);
med, medium; st, standard state; en, energy; in, integration; g, gas.
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